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By definition of subset, every set has two trivial subsets, itself and
. Two sets, A and B, are equal if the following two conditions are true:
1.AcCB, 2.BcA.

The first of the two conditions states that every element of A is an
element of B. The second states that every element of B is an element of A.
Therefore, A and B have exactly the same elements.

@EXAMPLE 1. Let A={neZ|the remainder of the division of n by 2 is zero} and
B={all integer multiples of 2}. Prove that A=B.
(> Proof
» Part 1. AcB.
Let x bea generic element of A (that is, x is any number satisfying the conditions to
belong to the set A). We need to prove that x is an element of B as well.

As x is an element of A, we can write.

X

Ezq’

where q is an integer number. Thus x=2q. This means that x is amultiple of 2. Therefore,
x is an element of B.
» Part 2. BCA.
Let x be an element of B. We need to prove that x is an element of A as well. Because
x is in B, it is a multiple of 2. Therefore, x=2t with t integer number. Thus,
R A

= t.
2 2

As the remainder of the division of x by 2 is zero, then x is an element of A. Using
both parts of this proof, we can conclude that A=B.

In some cases it is easier to compare sets after making their descriptions as explicit as possible.

‘ﬁf% Example 2. Let and A = {x eR <5} and B={xeR| is a number between the roots of the

X
2

equation x>-4x-96=0}. Prove that the two sets are equal.

@ﬁ Proof. We will simplify the descriptions of the tow sets.

By definition of absolute value, the inequality |[X_1/<5.

Is equivalent to the inequalities —5<X_1<5.

Adding 1 to all three parts of the prece%ling inequalities, we obtain —4 <X ¢,

Which is equivalent to -8<x<12. ?

Thus we can rewrite A={xeR|-8,x<12}.

The solutions of the equation x?-4x-96=0 are the numbers -8 and 12 (check this claim).
Therefore, B ={xeR|-8<x<12}.

At this point it is evident that the two sets are equal.
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